Density Functional Theory (DFT) Studies for Iron Pyrite

Yanning Zhang, Jun Hu, and Ruqian Wu 2010.9-2011.8

What we can do for studies of Pyrite

$$\left[-\frac{1}{2}\nabla^2 + V(r)\right]\Psi_i(r) = \varepsilon_i\Psi_i(r)$$

Structural properties

Elastic constants, formation energies for vacancies and other deficiencies, stability of nanostructures, surfaces and interfaces ...

Electronic Properties

Band structure, density of states, defect states, charge rearrangements, wave function of local or non-local states, transport ...

Optical properties

Dielectric function, x-ray adsorption, phonon ...

Magnetic properties

Local magnetization, magnetic ordering, magneto-optical properties ...

What we have done for studies of Pyrite

Bulk FeS₂

Various vacancies (S monomer and dimer, Fe);
Different dopants (O, N, P, Se, F, Cl and Br);
Different metal substituents (Sc, V, Cr, Mn, Co, Ni, Cu and Zn) on the electronic, optical and magnetic properties of the bulk FeS₂.

FeS₂(001) surfaces

The influence of the surface stoichiometry and morphology on the band gap of $FeS_2(001)$ surfaces; **M** The *segregation* of S vacancy and atom between surface and interior sites under different surface conditions; \mathbf{M} X-ray absorption spectroscopy (XAS); The *surface energies* of Fe-S pair potentials of the bulk FeS₂ and the FeS₂ (001) surface.

Bulk FeS₂

Computational Details

- DFT calculations with the plane-wave-based *Vienna Ab initio Simulation Package* (VASP)
- Projector augmented wave (PAW) method
- Generalized-gradient approximation (GGA)
- The Hubbard U correlation (U = 2.0 eV)
- Energy cutoff (350 eV), cell-size dependent *k*-points
- Atomic model: up to 3×3×3 supercell for bulk simulations; a seven-layer slab with a vacuum of ~15 Å thick for surface calculations.

Structure, band gap and dielectric functions of bulk FeS2

Vacancies: S monomer (V_S), S dimer (V_{S-S}), and Fe

$$\Delta H_f = \left[E(V) - E(FeS_2) + n_S \mu_S \right] / n_S$$

E(V) -- the total energy of a FeS₂ cell with sulfur vacancies.

 $E(FeS_2)$ -- the total energy of FeS₂ without sulfur vacancies.

 μ_s -- the chemical potential of a S atom

- Vs and Vs-s can form easily in the O-rich condition;
- It's relatively easy to remove an additional S once V_S is formed;
- In the S-rich environments, the removal of a S-Fe pair costs high energy and V_{Fe-S} is hence unlikely to develop in samples.
- The presence of S interstitial is excluded, because of the high formation energy.

The effect of vacancies on the electronic properties of bulk FeS2

- V_S induces defect states near VBM (S-p_z and Fe-t_{2g}) and CBM (S-p_z and Fe-e_g);
- V_{S-S} produces a nonbonding state (Fee_g) right below the Fermi level;
- Both V_s and V_{s-s} do **not** reduce the band gap;
- V_{Fe} triggers spin polarization, with a magnetic moment 2.0 _B/cell, suggesting possible long range magnetic ordering in Fe-deficient pyrite;
- Several states appear in the band gap; they may trap electrons in the minority spin channel or holes in the majority spin channel.

Oxygen substitution of S

Chlorine substitution of S

Cl_s has a long-range effect, which makes the FeS₂Cl (1.6%) a compound and results in a metallic feature due to the partially occupied new conduction band;

- At concentration of 0.5%, Cl can be regarded as impurity, although the impurity band is dispersive.
- The impurity bandwidth is linearly dependent on the CI concentration.
- The m_n of spin majority channel is larger than that of spin minority channel: 0.79 vs 0.57; while the trend of m_h are opposite: 1.70 vs 2.61.

The defect levels alignment (Γ point)

- Vacancies can't produce carriers since both the donor level (V_S or V_{S-S}) and acceptor level (V_{Fe}) are deep. So V_{Fe} could not be the source of p-type semiconducting in pyrite sample.
- Doping CI in FeS₂ may produces resonant donor state. The same as Br, but Br induces larger structure distortion due to the large ionic size.
- Doping Group-V elements may not obtain shallow acceptors.

The effect of different metal substituents on the electronic properties of bulk FeS2

Fe_{1-x}Zn_xS₂ alloys

Summary

- We have studied various native defects
- We have doped various Group-V, -VI and -VII elements in principle.
- We'll pay our attention to cation doping with 3d transition metal elements in the future.
- We'll study the optical properties of $Fe_{1-x}Zn_xS_2$ to see if it deserves further studies.
- J. Hu, Y.N. Zhang, M. Law and R.Q. Wu, "First-principles study on electronic properties of anion defects in iron pyrite", Phys. Rev. B, to be submitted.

FeS₂(100) surfaces

Pyrite (100) Surfaces

(eV)

R. Sun et al., PRB 83, 235311 (2011)

- *low-spin* ground state
- The d_z^2 surface states are located at the CB edge
- no gap state

American Mineralogist 83 (1998) 1067; Physical Review B 72 (2005) 235427; Surface Science Reports 64 (2009) 1–45;

.

DFT tests on the spin configuration of stoichiometric FeS₂(100) surface

- The high-spin state of stoichiometric FeS₂(001) surface is stable in a wide range of U values.
- The Hubbard U correlation greatly changes the electronic properties of surface.

Electronic structure of stoichiometric surface

- ✓ The gap is determined by the energy separation between two surface states in the *majority* spin channel: one with the Fe- d_z^2 feature atop the valance band (VB) and one has the Fe- $d_x^2+y^2$ feature at the bottom of the conduction band (CB);
- ✓ The magnetization mainly occurs in the *outermost* layer, whereas the interior layers remain in the low-spin status;
- ✓ Each surface Fe atom losses 0.1 more electrons, mainly from the dangled Fe-S bond to their sulfur neighbors.

Structure and surface energy with a varying stoichiometry

$$\gamma = \frac{1}{2A} [E_{slab} - N_{Fe} \mu_{Fe} - N_S \mu_S]$$
$$\mu_{Fe} = \mu_{FeS_2} - 2\mu_S$$

 E_{slab} -- the total energy of FeS₂ surface; N_{Fe} / N_{S} -- the numbers of Fe / S atoms; μ_{Fe} / μ_{s} -- the chemical potential of Fe / S atom; A -- the surface area.

- Addition of sulfur atoms to Surf(0) forms dimers on the Surf(n) surfaces;
- ✓ The Surf(0) is stable only in a narrow window, -3.92 eV < µ_S < -3.36 eV;</p>
- ✓ In a typical annealing environment, Surf(+1) is more preferential except at the end of H₂S.

Band gap as a dependence of surface sulfur stoichiometry

- * $ε_2(ω)$ curves keep the main features of bulk pyrite for ω > 1 eV;
- For n < 0.25, ε₂(ω) curves drops quickly for ω < 1 eV;
- For n > 0.25, side peaks appear at ω
 < 0.5 eV, demonstrating a decrease in band gap;
- The "band gap" shrinks with increasing surface sulfur: from ~0.75 eV to metallic feature.

The effect of surface sulfur morphology on the band gap

- S_{0.5}' is unstable with an energy lose of 2.62 eV/surface against the S_{0.5};
- * The band gap for $S_{0.5}$ is 0.65 eV, with large S- p_x , p_y peaks located at the edge of VB and CB.
- For S_{0.5} surface, several sharp peaks appear within the gap region, mainly with Fe-d_{xz,yz} and S-p_x,p_y features.

The segregation of S vacancy and atom

- The segregation of S vacancy from the interior layer to the outermost layer is energetically preferred;
- The surface conditions may affect the segregation of S vacancy.

X-ray absorption spectroscopy (XAS)

XAS spectrum of pyrite is very useful for studies of the surface structure and valance states.

Summary

Systematic spin-polarized DFT calculations were performed for studies of pyrite $FeS_2(100)$ surfaces of different stoichiometry.

The stoichiometric S_0 surface is magnetic, semiconducting, and shows high stability in the annealing conditions typically used in experiments.

While S-deficient surfaces still remain semiconductive feature, Excess sulfur dimers may easily form on the stoichiometric surface under S-rich conditions, leading to metallic behavior.

Y.N. Zhang, J. Hu, M. Law and R.Q. Wu, "*The influence of surface sulfur stoichiometry and morphology on the band gap of pyrite FeS*₂(100) surfaces", Phys. Rev. Lett, to be submitted.

What we will do soon

촮 Studies of related clean sulfide surfaces: Marcasite, Pyrrhotite and troilite;

Interface and interfacial states;

Optical properties of more complex surfaces/interfaces;

- Density functional calculations can provide various useful information for studies of Pyrite bulk, surface, and nanostructures.
- It is essential that our calculations are conducted through collaborations with experimental and other theoretical efforts.